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Philosophy of science
An introduction

John-Jules Ch. Meyer
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A classification of sciences
n Formal sciences

n study of ‘pure’ structures -

n mathematics and logic
n Empirical sciences

n study of ”maps of the concrete world”
n  natural sciences
n  cognitive sciences
n  cultural and social sciences

 (including linguistic studies)

J.-J. Ch. Meyer

A classification of sciences
n Practical sciences

n study of the applications themselves
n technical sciences
n study of law
n health sciences
n economics
n management studies
n pedagogical studies
n theatre studies
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Formal sciences
n study 'consistent' theories of abstract

structures, not tied to one single area of
science, but applicable in diverse more
concrete contexts

n the ontological status of the structures studied
themselves is subject of much philosophical
discussion ((possibly) real versus imaginary)
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Formal sciences
n these theories are formal in the sense that

they concern form rather than content
(concrete interpretation)

n typical examples are computational en
reasoning systems like in algebra and logic:
these work with formal languages that are
gemanipulated on a purely formal (syntactic)
basis ('formal game’)

n E.g. the tautology p ⁄ ¬p holds independent
from the (concrete) interpretation of p
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Formal sciences
n non-empirical: structures are

constructed, but no maps of the world /
reality

n  advantages of formal approaches:
n very precise / well-defined
n ’computation on representations instead of

interpretations'
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Empirical sciences
n yield ‘maps of the concrete world’

n In itself non-formal, although formal sciences
/ means (from mathematics and logic) may be
employed to analyze results and theories
obtained from empirical material further
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Empirical sciences
n the general method connects facts and

hypothesis / theory

n the empirical cycle: observation Æ
theory Æ  observation Æ  theory Æ 
observation Æ ...
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Practical sciences
n Not only being used in practice, but

also the application itself is subject of
scientific research
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Computer science as a
science
n  comp.sc. as a formal science

n Use of formal languages and methods for
the specification (and verification) of
software / systems, such as e.g. Hoare
logic and process algebra

n (complexity) analysis of algoritms
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Computer science as a
science
n comp. sc.  as a experimental / empirical

science
n testing and debugging software / systems
n testing performance of softw / systems
n the use of experimental architectures, such

as neural networks, agent systems
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Computer science as a
science
n comp. sc. as a technical / practical

science

n the design and construction of software /
systems
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Philosophy of mathematics

J.-J. Ch. Meyer

Philosophical positions in
mathematics
n  logicism (Frege, Russell)

n ”mathematics is a branch of logic"
n  formalism (Hilbert)

n ”mathematics is the science of formal systems"
n  intuitionism (Brouwer)

n ”mathematics is about mental constructions"
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Philosophical positions in
mathematics
n Making these philosophical positions precise

has contributed to the birth of the area of
mathematical logic.

n The immediate cause for researching the
foundations of mathematics was the
discovery of paradoxes in certain
fundamental parts of mathematics, in
particular set theory
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(Naïve) Set Theory
n attempt of defining sets from ∅ by means of

operations such as
n union »,
n power set P(.) and
n the full comprehension principle.
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Full comprehension principle
n full comprehension principle: for every well-

formulated condition P(x) there exist a 
set V that exactly contains the elements x
satisfying P(x)
n V = { x | P(x) }

n this definition appeared to be too vague and
gave rise to serious paradoxes
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Cantor's paradox
n Let S be the set of all sets, and T the set of all

subsets of S.
n Then Cantor's theorem says that

cardinality(S) < cardinality(T).
n On the other hand T is a subset of S, the set

of all sets. Thus cardinality(T) ≤ cardinality(S).
Contradiction.
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Russell's paradox:
n Let R = {V | V œ  V}. According to Cantor this

is a well-defined set. However: we have that
R Œ R ¤ R œ R.         

n Russell's pseudo-paradox of the barber: consider
a barber shaving all people who do not shave
themselves. The barber shaves himself iff he does
not shave himself.
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Solution to the paradoxes of
set theory
n Elimination of 'too big sets’ by means of axioms.
n naive set theory Æ formal-axiomatic set theory
n e.g. the system ZF (Zermelo-Fraenkel), probably the

simplest system in which most of the existing
mathematics can be derived but not the paradoxes,
as far as is known thusfar...
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The system ZF
n System ZF contains axioms such as:

- $x (Vx Ÿ  "y ¬(y Œ x))
(existence of empty set ∅)

- "x"y((Vx Ÿ Vy Ÿ "z (z Œ x ´ z Œ y)) Æ x = y)
(extensionality)

- "x(Vx Æ $y(Vy Ÿ "z(zŒy´$w(wŒx Ÿ zŒw))))
(union: y = » x)
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A few more axioms of ZF

- "x(Vx Æ $y(Vy Ÿ "z (z Œ y ´ (Vz Ÿ z Õ x))))
(powerset: y = Px)

- $x (Vx Ÿ ∅Œ x Ÿ "y(y Œ x Æ {y} Œ x))
(existence infinite set)
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Logicism

n instance of so-called Platonic Realism
n mathematical objects ‘exist’ independent from

the mathematician
n all mathematical notions reducible to abstract

properties
n mathematics is the study of the logical

(evident) basic principles wrt these properties
n mathematics is a branch of logic
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Logicism
n Russell tried to perform this reduction to logic in

Principia Mathematica.
n This attempt was not entirely successful:
n In order to avoid the paradoxes a further complication

was needed ('theory of types' + 'axiom of reducibility’)
n All this weakened the claim of the logicists that

mathematics can be reduced to logic substantially; it
comes down to mathematics = logic + set theory
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Formalism
n mathematics is manipulating finite configurations

symbols, according to certain rules
n mathematics is the science of formal systems,

consisting of a well-described syntax and a derivation
criterium

n N.B. mathematics itself is NO formal system; it only
studies formal systems
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Formalism

n Configurations:
n some have concrete meaning;
n some other are meaningless

n Choice of rules: out of pragmatic reasons Æ
concrete sensible / useful derivations
n vb. Predicate logic, formal arithmetic, ...
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Formalism
n acceptance of the fact that parts of classical

mathematics which use the ‘completed' infinite go
beyond what is intuitively evident Æ focus on ‘certain’
core of mathematics which can be axiomatised
formally

n Core problem: how can one prove parts of
mathematics consistent, in another way than using
models comprising apparently unreliable sets
(relative consistency)?
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Hilbert’s programme: the
metamathematical method
n Central problem: absolute consistency proofs
n Is (mathematicsÆ) arithmetic consistent?
n To answer this question Hilbert proposed to employ a

certain evident kind of reasoning (so-called finitistic
methods): of elementary combinatorial nature, such
as simple arithmetical operations and checking
decidable properties.
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Finitistic methods
n finitistic mathematics was regarded by Hilbert as the

true mathematics: allow concrete representation +
manipulation of sequences of tokens / symbols; is
part of arithmetic (after coding)

n properties of formalized mathematics should be
proven in the meta language via finitistic methods
('metamathematica')
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Consistency proofs

n a finitistic proof of the consistency of
arithmetic (¶fin ConPA , where ConPA stands
for the expression ¬$x Prov(x, È0=1˘) with x a
code of a proof and È0=1˘ a code for the
assertion 0=1) would then guarantee the
consistency of arithmetic : ¶PA ConPA
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Intuitionism (Brouwer)

n mathematics is a stand-alone activity
concerning mental constructions according to
selfevident rules, independent from language.

n Gave rise to critical review of
- the notion of an (existence) proof
- the notion of a computable function
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Intuitionism: infinite sets
n According to Brouwer the positive integers

constitute the starting point of mathematics
via repeated duplication of the element '|': '|',
'||', '|||', ...  -- having to do with the notion of
'time'

n infinite sets are intuitionistically always
potentially infinite (under construction) rather
than actually infinite
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Truth in intuitionism
n Truth of a proposition must be constructive : it must

rest on proof (a certain kind of mental construction)   -
--> consequences for proofs of $-propositions

n Consequence: propositions aren’t true or false; they
can also be undetermined; even inherently so, if it
concerns a undecidable property:

°intuit p ⁄ ¬p
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Intuitionistic logic

n the intuitionistic interpretation (of truth) of
propositions gives rise to a non-classical
logic:

n So-called intuitionistic logic (Heyting)

n Propositions are: 'reports of completed proofs'
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Intuitionistic logic
n truth conditions:

- P ⁄ Q : at least one of P, Q is proven
- P Ÿ Q : both P and Q is proven
- P Æ Q : a construction C is available of which it is
proven that if C is applied to any possible 
proof of P, the result is a proof of Q
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Intuitionistic logic
- ¬P : is the same as "P Æ ^", i.e. any 

possible proof of P can be 
transformed into a proof of a 
contradiction

- $x P(x) : there is a construction of an s (in 
the domain over which one quantifies) such that
P(s) is proven

- "x P(x) : there is a proof of which it is 
shown that this specializes to a proof of P(s) for
every s in the domain of quantification.
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Intuitionistic logic
n Formal proof system: e.g. ’classical' system of

natural deduction minus the rule of elimination of
double negation:

¬¬j
j

n The rest of the system is the same as that for
classical logic, including the 'ex falso sequitur
quodlibet' rule. Remarkably also the rules for the
quantifiers " and $ are the same as in the classical
case despite their different (constructive)
interpretation!
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Intuitionistic logic
n Some well-known non derivable formulas:
1. ‡intuit ¬¬j Æ j
2. ‡intuit j ⁄ ¬j

3. ‡intuit $y($x j Æ j[y/x])   'Plato's law
n but we do have:
n ¶intuit $x j fi there exists term t s.t. ¶intuit j[t/x])

J.-J. Ch. Meyer

Axiomatising mathematics

n Followers of formalism, like Hilbert,
aimed at a complete axiomatisation of
mathematics

n In particular they thought how arithmetic
could be axiomatised in a complete way
since this constituted the core of
mathematics
n Peano’s axiomatic arithmetic (PA)
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Peano’s axiomatic arithmetic
(PA)
n  axioms of PA:
n 1. "x ¬(0 = sx)
n 2. "x, y (sx = sy) Æ (x = y)
n 3. "x  x + 0 = x
n 4. "x, y  x + sy = s(x + y)
n 5. "x, y  x ¥ sy = (x ¥ y) + x
n 6. "x  x ¥ 0 = 0
n I. (P(0) Ÿ "x (P(x) Æ P(sx))) Æ "x P(x)

induction scheme
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Soundness of PA

n  soundness of Peano’s arithemetic:

¶PA j  fi  N • j

n where N stands for the standard model of de
arithmetic, i.e. the natural numbers with the
usual definition of addition, multiplication,
successor and equality.
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Incompleteness of PA
n Hilbert's programme: there exists a formal system for

mathematics that is consistent and complete, in
particular there exist such a formal system for
arithmetic.

n Kurt Gödel (1931): ’the system PA is incomplete!’:

N • j  fi  ¶PA j
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Incompleteness arithmetic

n Gö del even showed that any sound,
consistent formal system incorporating
arithmetic, is incomplete: there are always
true assertions (that cannot be proven within
such a system. 

n final blow for Hilbert's programme!
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Presburger arithmetic

n Remarkably, arithmetic on the natural
numbers with only addition and
successor (no multiplication) can be
completely axiomatized: "Presburger
arithmetic” is complete.

J.-J. Ch. Meyer

Gödel’s incompleteness
theorems
n Gödel proved the following theorems:

1. Exist assertion A s.t. ‡PA A and ‡PA ¬A.
(1st theorem)

2. ‡PA ConPA, if PA is consistent:
the consistency of PA is not provable within PA

 (2nd theorem)
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Gödel’s theorems

n In fact Gödel proved:
n there is no effectively enumerable axiom

system that proves exactly the true (w.r.t.
the standard model) arithmetical assertions
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Gödel’s theorems
n Wij will prove the following proposition:

3. Exist assertion A s.t. N • A and ‡PA A.
n Note that 1. Follows from 3. :

n an proposition is not both true and false:
n not: N • A and N • ¬A,
n I.e. N ° A or N ° ¬A,
n I.e. N • A fi N ° ¬A.

n Furthermore by soundness:
n ¶PA A  fi  N • A, and so N ° A  fi  ‡PA A.

n So from 3. $A s.t. N • A and ‡PA A it follows that $A zdd N °
¬A and ‡PA A and so 1.$A zdd ‡PA ¬A and ‡PA A. Ø
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Sketch of proof

n Proof. We assume a computable
injective function (gödel number):

g: Formulas* Æ N

n (i.e. (sequences) formulas in the object
language are uniquely coded)
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Gödel coding
n arithmetisation of meta-mathematics
n  coding alphabet, e.g.

g(0) = 1 g(=) = 5 g(⁄) = 9

g(s) = 2 g(x) = 6 g(Æ) = 10

g(+) = 3 g(y) = 7 g(() = 11

g(¥) = 4 g(¬) = 8 g()) = 12
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Gödel coding(2)
n coding formulas, e.g.

g( x + sy = s(x + y) ) =

26 · 33 · 52 · 77 · 115 · 132 · 1711 · 196 · 233 · 297 · 3112

n coding sequences of formulas, e.g.

g( F1, F2, F3, ... ) =  2g(F1) · 3g(F2) · 5g(F3) · …
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Meta language Æ object
language
n meta-math. assertions Æ  arithmetic assertions
n E.g. sequence X is prefix of sequence Y Æ g(X) is a

special kind of divisor of g(Y)
n a proof is a sequence of formulas that satisfies a

number of conditions, which can all be coded in the
object language (i.e. formal arithmetic): this is by no
means trivial!

n Proof(x, y, z) is expressible as arithmetic assertion
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Proof predicate
n Define a predicate Proof(x, y, z) s.t.
n Proof(x, y, z) ¤ 

x = g(Y) where Y is a proof (sequence of
formulas) of a formula F[z] for a formula F
with 1 free variable s.t. g(F) = y.

n Proof(x, y, z) can be expressed in the object
language by a formula with variables x, y and
z.
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“I am not provable!”
n Now consider formula ¬$x Proof(x, y, y). This is a

formule with 1 free variable (y) and has gödel number
g = g(¬$x Proof(x, y, y)).

n Claim: A = ¬$x Proof(x, g, g) satisfies the
requirement.

n note that this formula A = ¬$x Proof(x, g, g) says
something like ”I am not provable")
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Sketch of proof (ctd)
n Claim: N • ¬$x Proof(x, g, g) and ‡PA ¬$x Proof(x, g,

g).

n Proof: suppose ¶PA ¬$x Proof(x, g, g).(*) Then there
is a gödel number p of the proof P of ¬$x Proof(x, g,
g). So by definition Proof(p, g, g) is true. (p = g(P)
where P is a proof (sequence of formulas) of a
formula F[g] for a formula F with 1 free variable s.t.
g(F) = g and F = ¬$x Proof(x, y, y)).
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Q.E.D.!
n However, from N • Proof(p, g, g) it follows that N •

$x Proof(x, g, g). Now from the soundness of PA and
(*) we obtain that N • ¬$x Proof(x, g, g), and so N °
$x Proof(x, g, g). Contradiction.

\ (*) is not true: ‡PA ¬$x Proof(x, g, g). Consequently
N • ¬$x Proof(x, g, g) !

Q.E.D Ø


